Respiratory Motion Estimation Using a 3D Diaphragm Model
نویسندگان
چکیده
Long acquisition times of several seconds lead to image artifacts in cardiac C-arm CT. These artifacts are mostly caused by respiratory motion. In order to improve image quality, it is important to accurately estimate the breathing motion that occurred during image acquisition. It has been shown that diaphragm motion is correlated to the respiration-induced motion of the heart. We present a method to estimate an accurate three-dimensional (3D) model of the diaphragm and its compression motion field from a set of C-arm CT projection images acquired during free breathing. First results on the digital XCAT phantom are promising. The method is able to estimate the motion field amplitude exactly. The boundaries of the estimated compression motion field are estimated within 3mm accuracy.
منابع مشابه
3D projection reconstruction based respiratory motion correction technique for free-breathing coronary MRA
INTRODUCTION: Respiratory motion is one of the major challenges for coronary MRA. Current navigator based free-breathing techniques measure the position of the diaphragm and use a fixed correlation factor to estimate the position of the heart. Such techniques suffer from errors due to the indirect estimation of heart position and are plagued by low scan efficiencies (typically between 30 and 50...
متن کاملAdvanced Respiratory Motion Compensation for Coronary MR Angiography
Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion ...
متن کاملSelf-guided retrospective motion correction (SEGMO) for free-breathing whole-heart coronary MRA with 100% acquisition efficiency
Background Free-breathing whole heart coronary MRA uses diaphragm navigator to gate data acquisition, which suffers from the need for time-consuming and exquisite positioning, prolonged scan time due to low gating efficiency, and inaccuracy in motion detection. In this work, a respiratory motion correction scheme is proposed with an affine motion model for accurate estimation of respiratory mot...
متن کاملRespiratory Motion Estimation from Cone-Beam Projections Using a Prior Model
Respiratory motion introduces uncertainties when planning and delivering radiotherapy for lung cancer patients. Cone-beam projections acquired in the treatment room could provide valuable information for building motion models, useful for gated treatment delivery or motion compensated reconstruction. We propose a method for estimating 3D+T respiratory motion from the 2D+T cone-beam projection s...
متن کاملAutomatic detection of liver tumor motion by fluoroscopy images
Background: A method to track liver tumor motion signals from fluoroscopic images without any implanted gold fiducial markers was proposed in this study to overcome the adverse effects on precise tumor irradiation caused by respiratory movement. Materials and Methods: The method was based on the following idea: (i) Before treatment, a series of fluoroscopic images corresponding to different bre...
متن کامل